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Background: Large Language Models (LLMs) struggle with reliable structured output genera-

tion, particularly JSON schema compliance, despite recent claims of 100% reliability through
constrained decoding techniques. Problem: Current approaches exhibit fundamental limitations
including 15-30% reasoning accuracy degradation under format constraints, persistent hallu-
cinations in 5-10% of cases, and unknown scalability bounds for complex schemas. Method:
We propose a comprehensive research framework systematically investigating the relationship
between JSON complexity and generation reliability. Our approach includes formal complexity
metrics, standardized experimental protocols, and testable hypotheses regarding tokenization
impacts and architectural limitations. Contributions: (1) A mathematical framework for
classifying JSON complexity based on nesting depth, field count, and type diversity; (2) Four
primary research questions with specific testable hypotheses; (3) Standardized experimental
protocols for reproducible research; (4) Identification of critical knowledge gaps and research
priorities. Expected Impact: This research agenda provides a roadmap for transforming
structured generation from experimental capability to reliable production technology, enabling
predictable performance and optimal architectural choices for enterprise applications.

Keywords: Large Language Models, Structured Output Generation, JSON Schema Compliance,

Constrained Decoding, Natural Language Processing

Introduction

The challenge of generating reliable JSON output from
LLMs represents a fundamental computational incompatibil-
ity between probabilistic text generation and exact symbolic
compliance. This problem connects to classical challenges in
computer science: constraint satisfaction problems (CSPs) are
known to be NP-complete in the general case, and the task of
generating valid structured output while maintaining semantic
coherence essentially requires solving a CSP while simultane-
ously optimizing for natural language quality. Furthermore,
from a formal language theory perspective, JSON represents a
context-free grammar, while transformer architectures are fun-
damentally designed for sequential token prediction without
explicit grammatical guarantees. This theoretical mismatch
underlies many of the practical challenges we observe.

This position paper proposes a comprehensive research
agenda to systematically investigate these challenges follow-
ing established methodologies for computer science research
(Hassani, 2017; Raghavan, 2021). Our approach follows
the framework for research agenda papers in computer sci-
ence, which involves identifying problem spaces, synthesizing
current knowledge, and proposing hypotheses and research
directions (Kitchenham & Charters,[2007). Unlike systematic
literature reviews that evaluate existing research, this paper
identifies what we don’t know and proposes how to investigate
it systematically.

Baldwin/Atil (Atil et al.,[2024])) observed that even suppos-
edly “deterministic” settings can exhibit accuracy variations
up to 15% due to floating-point precision issues, parallel pro-
cessing artifacts, and memory optimization strategies. This
paper establishes a research framework to investigate these
phenomena systematically.

Related Work
Existing Structured Generation Approaches

The landscape of structured output generation from LLMs
has evolved rapidly, with multiple technical approaches
emerging to address the fundamental challenge of enforcing
structural constraints on probabilistic text generation.

Constrained Decoding Methods: Guidance (Microsoft,
2023)) and Outlines (Willard & Louf, 2023)) represent the cur-
rent state-of-the-art in constrained decoding, using finite state
machines (FSMs) to enforce grammatical constraints during
generation. These methods guarantee syntactic validity by
masking invalid tokens at each generation step. However,
as Willard & Louf (2023) acknowledge, the computational
complexity grows exponentially with schema complexity, and
these approaches can suffer from significant reasoning degra-
dation when constraints become too restrictive.

Grammar-Based Approaches: JSONformer (Clarkson
et al., 2023)) and similar tools leverage formal grammars to
guide generation. While these ensure structural compliance,
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they often struggle with maintaining semantic coherence, par-
ticularly for nested structures. Scholak (Scholak et al., 2021
demonstrated that grammar-constrained decoding for SQL
generation could achieve high syntactic accuracy but at the
cost of semantic correctness in complex queries.

Fine-tuning and Prompt Engineering: Recent work has
explored whether specialized fine-tuning can improve struc-
tured output reliability. Whitehouse et al. (Whitehouse et al.,
2023)) showed that instruction-tuned models could achieve
85-90% JSON compliance on simple schemas through careful
prompt engineering alone. However, their work also revealed
a sharp degradation in performance for schemas with more
than 10 fields or nesting depth greater than 2.

API-Level Solutions: OpenAlI’s Structured Outputs fea-
ture (OpenAl, |2024) and similar API-level implementations
claim near-perfect reliability. However, these solutions of-
ten operate as black boxes, making it difficult to understand
their limitations or adapt them to specialized domains. More-
over, independent evaluation by BoundaryML (BoundaryML,
2024) found that even these commercial solutions exhibit
failure rates of 5-10% on complex, production-like schemas.

Research Framework Papers in NLP

Our approach builds on established traditions of agenda-
setting papers in NLP and machine learning. Bommasani
(Bommasani et al.,|[2021)) provided a comprehensive research
agenda for foundation models, identifying key research direc-
tions and open challenges. Similarly, Ganguli (Ganguli, 2022)
outlined research priorities for Al alignment, establishing both
theoretical frameworks and practical benchmarks. Our work
follows this tradition but focuses specifically on the structured
output generation problem.

Theoretical Foundations

The challenge of structured generation connects to several
areas of theoretical computer science. From a complexity the-
ory perspective, determining whether a given string satisfies
an arbitrary JSON schema is equivalent to solving a context-
free grammar membership problem, which can be done in
polynomial time. However, generating text that simultane-
ously satisfies structural constraints and maintains semantic
coherence transforms this into a multi-objective optimization
problem with no known efficient solution.

Deutsch (Deutsch et al., |2019) explored the theoretical
limits of neural sequence models for hierarchical structures,
proving that transformer architectures without positional en-
codings cannot learn certain tree structures. While positional
encodings partially address this limitation, their work suggests
fundamental architectural constraints that our research agenda
aims to investigate empirically.

Gaps in Current Literature

Despite these advances, critical gaps remain:

1. No systematic complexity-performance characteri-
zation: While individual papers report performance on
specific schemas, no work has systematically mapped the
relationship between schema complexity and generation
reliability across multiple dimensions.

2. Limited understanding of failure modes: Current liter-
ature lacks a comprehensive taxonomy of failure types,
making it difficult to develop targeted solutions.

3. Absence of standardized benchmarks: Each paper
uses different evaluation schemas and metrics, prevent-
ing meaningful comparison across approaches.

4. Theoretical limits unexplored: No work has attempted
to prove fundamental impossibility results or establish
theoretical upper bounds on reliability for given com-
plexity levels.

Our research framework addresses these gaps by proposing
systematic investigation protocols, standardized metrics, and
a unified theoretical framework for understanding structured
generation challenges.

Research Questions

To advance our understanding of LLM structured output
generation, we propose the following hierarchical research
questions:

Primary Research Questions

RQ1: What is the mathematical relationship between
JSON schema complexity and generation reliability?

e RQI.1: How does nesting depth affect generation accu-
racy?

e RQ1.2: What is the impact of field count on structural
compliance?

e RQ1.3: How do different data types (strings, numbers,
arrays, objects) influence reliability?

RQ2: How does tokenization boundary alignment affect
structured output accuracy?

e RQ2.1: Which delimiter patterns cause systematic er-
rors?

e RQ2.2: Can optimal tokenization strategies be identified
for JSON generation?

e RQ2.3: What is the quantitative impact of misaligned
boundaries?

RQ3: What are the fundamental theoretical limits of
constrained generation?

e RQ3.1: Is there a provable upper bound on reliability for
given complexity levels?
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e RQ3.2: What is the computational complexity of perfect
JSON generation?

e RQ3.3: Can we prove impossibility results for certain
schema patterns?

RQ4: How do different architectural choices impact
the structure-reasoning tradeoff?

e RQ4.1: Which attention mechanisms best preserve se-
mantic accuracy under constraints?

e R(Q4.2: How do model size and architecture affect the
tradeoff curve?

e RQ4.3: Can architectural modifications mitigate reason-
ing degradation?

Testable Hypotheses

Based on preliminary observations and theoretical consid-
erations, we propose the following testable hypotheses:

H1: Exponential Complexity Degradation

Hypothesis: JSON generation reliability decreases expo-
nentially with nesting depth beyond level 3.

o Rationale: Transformer attention mechanisms have
known limitations with hierarchical relationships
(Deutsch et al.,[2019; Hahn, [2020)

o Test: Systematic evaluation across schemas with nesting
depths 1-10

o Expected outcome: Reliability = a - e #9P" for depth
>3

H2: Field Count Threshold

Hypothesis: Schemas with > 20 fields experience > 50%
degradation in reasoning accuracy compared to unconstrained
generation.

e Rationale: Constraint satisfaction complexity increases
combinatorially

o Test: Comparative analysis of reasoning tasks with vary-
ing field counts

e Metrics: Accuracy on embedded logic problems, seman-
tic coherence scores

H3: Tokenization Boundary Impact

Hypothesis: Token boundary misalignment may account
for a significant portion of structural errors in JSON genera-
tion.

o Rationale: Preliminary analysis suggests that delimiters
like {, }, : often split across tokens, potentially disrupting
the model’s ability to maintain structural consistency

e Test: Error analysis correlating tokenization patterns
with failure modes

e Control: Compare byte-pair encoding vs. character-
level tokenization

H4: Fine-tuning Efficacy

Hypothesis: Fine-tuning on domain-specific JSON im-
proves reliability by 2x over general models for complex
schemas (> 10 fields, > 2 nesting levels).

o Rationale: Specialized training enables better pattern
recognition, as demonstrated in domain-specific appli-
cations (Parthasarathy et al., 2024; Whitehouse et al.,
2023)

e Test: Controlled experiments with identical schemas
across base and fine-tuned models

e Variables: Training data volume, schema diversity,
model size

JSON Complexity Framework

We propose a formal framework for classifying JSON com-
plexity to enable systematic investigation:

Complexity Metrics Definition

Let C be the complexity score of a JSON schema, defined
as:

C=a1-F+a-D+azy-N+a4-T+as5-R
Where:
e F = Field count (total number of properties)
e D = Maximum nesting depth

e N = Number of nested objects/arrays

T = Type diversity score (unique data types used)
e R = Recursion presence (binary: 0 or 1)

e a;...a5 = Empirically determined weights

Weight Determination Methodology

The weights a;...as will be empirically determined through
the following process:

1. Calibration Dataset Creation: Assemble a diverse set
of 1,000 JSON schemas with known generation reliabil-
ity scores from production systems and existing bench-
marks.

2. Multi-Model Evaluation: Test each schema across at
least 5 different LLMs (GPT-4, Claude, Llama-3, Gem-
ini, Mistral) to obtain average reliability scores.
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3. Regression Analysis: Use multiple linear regression to
fit the weights, with reliability as the dependent variable
and the five complexity factors as independent variables.

4. Cross-Validation: Employ k-fold cross-validation
(k=10) to ensure the weights generalize well and aren’t
overfit to the calibration set.

5. Initial Weight Estimates: Based on preliminary anal-
ysis, we hypothesize initial weights of @; = 1.0 (field
count baseline), @, = 2.5 (nesting depth has higher im-
pact), a3 = 1.5 (nested objects moderately complex),
ayq = 0.5 (type diversity less critical), @5 = 3.0 (recursion
highly complex).

These weights will be refined through empirical valida-

tion and may vary by model architecture, requiring separate
calibration for different model families.

Complexity Categories
Based on this framework, we propose three operational
categories:
Simple JSON (C < 10)
e 1-5 fields, no nesting
o Expected reliability: > 95%
o Use cases: Basic API responses, configuration files
e Example: {"name": "value", "count": 5}
Moderate JSON (10 < C < 50)
e 6-20 fields, 1-2 nesting levels
o Expected reliability: 70-90%

e Use cases: Standard business objects, simple hierarchies

e Research priority: Optimization target for most applica-
tions

Complex JSON (C > 50)
e > 20 fields, > 2 nesting levels, possible recursion

e Expected reliability: < 70% without specialized tech-
niques

o Use cases: Complete domain models, nested data struc-
tures

e Research priority: Requires breakthrough innovations

Reliability Prediction Model

We hypothesize the following relationship between com-

plexity and reliability:

R(C) = T3 keCo

Where:

e R(C) = Reliability at complexity C

e k = Steepness parameter (to be empirically determined)

e Cy = Complexity threshold (hypothesized at Cy = 30)
Gaps in Current Knowledge

Despite recent advances, critical knowledge gaps impede

progress toward reliable structured generation:

Empirical Gaps

1. No systematic complexity-reliability curves: While
anecdotal evidence suggests degradation with complex-
ity, no comprehensive studies map this relationship quan-
titatively.

2. Unknown optimal tokenization strategies: Despite
recognition of tokenization issues (Kudo & Richardson,
2018)), no systematic investigation of optimal strategies
exists for structured output.

3. Unclear failure taxonomy: Current literature lacks a
comprehensive classification of failure modes, making
targeted solutions difficult.

4. Missing longitudinal reliability studies: No studies
track reliability degradation over extended generation
sequences or context windows.

Theoretical Gaps

1. Undefined computational complexity bounds: The
theoretical complexity of constrained JSON generation
remains uncharacterized.

2. No formal impossibility results: We lack proofs about
what cannot be achieved with current architectures.

3. Incomplete understanding of attention-structure in-
teraction: How attention mechanisms process hierarchi-
cal structures needs formal characterization.

Practical Gaps

1. Inconsistent benchmarking standards: Different stud-
ies use incompatible metrics, preventing meaningful
comparison.

2. Limited production failure analysis: Most studies use
synthetic tasks rather than production workloads.
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3. Insufficient cross-domain investigation: Impact of
domain-specific schemas on generation reliability re-
mains understudied.

Proposed Experimental Protocols

To address these gaps systematically, we propose standard-
ized experimental protocols:

Protocol 1: Complexity-Reliability Mapping
Objective: Establish empirical curves relating JSON com-
plexity to generation reliability.

Method:

1. Generate synthetic schemas with systematically varied
complexity (C = 1 to 100)

2. Create 100 test instances per complexity level

3. Evaluate across 5+ major LLMs (GPT-4, Claude, Llama,
etc.)

4. Measure: syntactic validity, schema compliance, seman-
tic coherence

5. Statistical analysis: regression modeling, confidence in-
tervals

Expected Timeline: 6 months

Required Resources: 10,000 GPU hours, $50,000 API
costs

Protocol 2: Tokenization Impact Study

Objective: Quantify the impact of tokenization strategies
on JSON generation.
Method:

1. Implement multiple tokenization approaches (BPE,
character-level, JSON-aware)

2. Create test suite focusing on delimiter-heavy schemas
3. Correlate tokenization boundaries with error locations
4. A/B testing with modified tokenizers

Success Metrics:

e Error reduction rate

o Correlation coefficient between boundary misalignment
and failures

Protocol 3: Ablation Studies on Architectural Compo-
nents

Objective: Identify architectural features most critical for
structured generation.
Method:

1. Systematic ablation of transformer components

2. Test impact of: attention heads, layer depth, positional
encoding variants

3. Measure structure-reasoning tradeoff curves

4. Cross-architecture comparison (transformer vs. alterna-
tive architectures)

Protocol 4: Fine-tuning Efficacy Analysis

Objective: Determine optimal fine-tuning strategies for
JSON generation.
Variables:

e Training data volume (107 to 10° examples)
e Schema diversity (homogeneous vs. heterogeneous)
e Model size (1B to 100B parameters)

e Training approach (full fine-tuning vs. LoRA vs. prompt
tuning)

Call for Research

For each major research area, we identify specific needs
and propose investigations:

Tokenization and Encoding

What we know: Tokenization is essential for transformer
performance but creates boundary issues with JSON delim-
iters (Kudo & Richardson, 2018; Sennrich et al.,|[2016).

What we don’t know:

e Optimal tokenization granularity for structured output
e Impact of JSON-specific tokenizers

e Whether byte-level models outperform token-based mod-
els

Proposed studies:
1. Comparative analysis of tokenization strategies
2. Development of JSON-aware tokenizers
3. Investigation of continuous (non-tokenized) approaches

Expected impact: 20-40% reduction in structural errors
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Constraint Mechanisms

What we know: FSM-based approaches guarantee syn-
tactic validity but suffer NP-hard complexity for arbitrary
constraints (Willard & Louf,2023)).

What we don’t know:

e Optimal balance between hard and soft constraints

o Scalability limits of current approaches

e Impact on model reasoning capabilities

Proposed studies:

1. Complexity analysis of constraint satisfaction algorithms

2. Hybrid hard/soft constraint systems

3. Approximation algorithms for complex schemas
Fine-tuning and Specialization

What we know: Fine-tuning improves performance on
domain-specific tasks (Parthasarathy et al.,[2024; Whitehouse
et al.,[2023).

What we don’t know:

e Minimum training data requirements for reliable struc-
tured generation

o Generalization across schema families
e Optimal curriculum learning strategies
Proposed studies:

1. Sample efficiency curves for different schema complexi-
ties

2. Transfer learning between schema families
3. Meta-learning approaches for rapid adaptation

Methodological Recommendations

To ensure research quality and reproducibility, we recom-
mend:

Standardized Benchmarking Requirements
1. Minimum sample sizes:
e N > 1000 for simple schemas

e N > 5000 for complex schemas

e Power analysis for detecting 5% accuracy difter-
ences

2. Required metrics:

o Syntactic validity rate

e Schema compliance rate

e Semantic accuracy (task-specific)
e Generation latency (p50, p95, p99)

e Token efficiency
3. Statistical reporting:

e Confidence intervals (95% CI)
e Effect sizes (Cohen’s d)

e Multiple comparison corrections

Reproducibility Standards
Following Kitchenham & Charters (2007) guidelines:

1. Code and data availability: All experiments must pro-
vide:
e Complete source code
e Training/test data or generation scripts

e Model checkpoints or training configurations
2. Version control: Specify exact versions of:

e Model architectures and weights
e Libraries and dependencies

e Random seeds for deterministic reproduction
3. Computational requirements: Document:

e Hardware specifications
e Total compute hours

e Estimated reproduction costs

Research Priorities

Based on potential impact and feasibility, we rank research
priorities:

Priority 1: Establish Complexity-Reliability Curves

Rationale: Fundamental for all other research
Timeline: 6 months
Expected outcome: Empirical models predicting reliability
from schema characteristics

Priority 2: Develop Theoretical Foundations

Rationale: Guides practical solutions
Timeline: 12 months
Expected outcome: Formal characterization of generation
limits

Priority 3: Create Standardized Benchmarks

Rationale: Enables comparative research
Timeline: 3 months
Expected outcome:
10,000+ test cases

Open-source benchmark suite with
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Priority 4: Investigate Tokenization Solutions

Rationale: Addresses root cause of many errors
Timeline: 9 months
Expected outcome: JSON-optimized tokenization strategies

Priority 5: Optimize Fine-tuning Approaches

Rationale: Practical near-term improvements
Timeline: 6 months
Expected outcome: Best practices guide for practitioners

Community Building

Advancing this research agenda requires coordinated com-
munity effort:

Infrastructure Needs

1. Shared Benchmark Repository:

Centralized collection of test schemas

Standardized evaluation harness

Leaderboard for comparative results

Version control for benchmark evolution

2. Standardized Evaluation Metrics:

Reference implementations

Statistical analysis tools

Visualization frameworks

Cross-study comparison tools
3. Collaboration Framework:

e Working groups for each research priority
e Regular workshops/symposiums
e Shared computational resources

e Industry-academia partnerships

Proposed Venues

1. New conference track: ‘“Structured Generation in
LLMs” at major ML conferences

2. Special journal issues: Focused on structured output
research

3. Workshop series: Quarterly meetings for progress shar-
ing

4. Online collaboration: GitHub organization for shared
tools and data

Mathematical Formalization

To enable rigorous analysis, we propose formal notations:

Schema Complexity Measures

Let S be a JSON schema. Define:

Depth(S) = max{d(p) | p € paths(S)}
Where d(p) is the nesting level of path p.

Width(S) = |fields(S)|
Where fields(S) is the set of all fields at all levels.

TypeDiversity(S) = [{type(f) | f € fields(S)}|

Reliability Functions

Define reliability R as a function of schema S and model
M:

R(S, M) = P(valid(output) | schema = S, model = M)

Where valid(output) checks both syntactic and semantic
correctness.

Token-Structure Alignment

Define alignment score A:

AGS,T) = Z I(boundary(i, T))
iedelimiters
Where [ is an indicator function for token boundary align-
ment.

Preliminary Observations

Based on existing literature and initial investigations, we
note:

1. Preliminary evidence suggests exponential degradation
with nesting depth, but systematic validation is needed.

2. Initial observations indicate that hybrid approaches
(combining multiple techniques) outperform single-
method solutions.

3. This hypothesis requires validation through controlled
experiments across diverse schema families.

4. Early results show that prompt engineering alone can-
not overcome fundamental architectural limitations.

5. Recent studies demonstrate that specialized train-
ing on structured outputs can significantly improve
performance, though the extent of improvement
varies by model architecture and schema complexity
(Parthasarathy et al.,|[2024).

Open Source Research Toolkit Proposal

To accelerate research, we propose developing:
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Core Components

1. JSON Complexity Analyzer:

e Automated complexity scoring
e Visualization of schema structure
e Complexity distribution analysis

e Recommendations for simplification
2. Standardized Test Suite Generator:

e Parameterized schema generation
e Synthetic data creation
e Edge case inclusion

e Balanced complexity distribution
3. Statistical Analysis Package:

o Reliability curve fitting
o Significance testing
e Meta-analysis tools

e Visualization libraries
4. Failure Analysis Toolkit:

e Error classification system
e Root cause analysis tools
o Pattern detection algorithms

e Remediation suggestions

Implementation Plan

Phase 1 (Months 1-3): Core infrastructure

e Basic complexity analyzer

e Initial test suite (1,000 schemas)

o Simple statistical tools

Phase 2 (Months 4-6): Enhancement

e Advanced analysis features

o Expanded test suite (10,000 schemas)

o Integration with popular frameworks

Phase 3 (Months 7-12): Community adoption

o Plugin architecture

e Community contributions

e Documentation and tutorials

e Workshop materials

Conclusion

This research agenda identifies critical gaps in our under-
standing of LLM structured output generation and proposes
systematic approaches to address them. While recent ad-
vances claim high syntactic compliance rates, evidence from
multiple sources suggests fundamental challenges remain,
including persistent reasoning degradation and scalability lim-
itations.

The proposed framework provides:

1. Testable hypotheses about complexity-reliability rela-
tionships

2. Standardized experimental protocols for investigation
3. Mathematical formalization enabling rigorous analysis
4. Community infrastructure for collaborative research
Success in this research program would enable:

e Predictable reliability for production systems

e Optimal architectural choices for structured generation
e Theoretical understanding of fundamental limits

e Practical guidelines for system design

The field stands at a critical juncture where systematic
research can transform structured generation from an exper-
imental capability to a reliable production technology. This
agenda provides a roadmap for that transformation.
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Appendix A
Preliminary Complexity Analysis
Complexity Category % of Production Use  Current Reliability =~ Research Priority
Simple (C < 10) 45% 95-99% Low
Moderate (10 < C < 50) 40% 70-90% High
Complex (C > 50) 15% <70% Critical

Table A: Distribution of JSON schema complexity in production systems

Appendix B
Proposed Timeline
Quarter  Deliverable Resources Required
Q12025 Benchmark suite v1.0 2 FTE, $10K
Q22025 Complexity-reliability curves 5 FTE, $50K compute
Q32025 Tokenization study results 3 FTE, $30K compute
Q42025 Fine-tuning best practices 4 FTE, $40K compute

Q12026 Theoretical foundations paper 3 FTE
Q22026 Production deployment guide 2 FTE

Table B: Proposed research timeline and resource allocation
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